Azure OpenAI Service – Streaming ChatCompletions and Token Consumption Tracking

This is part of my series on GenAI Services in Azure:

  1. Azure OpenAI Service – Infra and Security Stuff
  2. Azure OpenAI Service – Authentication
  3. Azure OpenAI Service – Authorization
  4. Azure OpenAI Service – Logging
  5. Azure OpenAI Service – Azure API Management and Entra ID
  6. Azure OpenAI Service – Granular Chargebacks
  7. Azure OpenAI Service – Load Balancing
  8. Azure OpenAI Service – Blocking API Key Access
  9. Azure OpenAI Service – Securing Azure OpenAI Studio
  10. Azure OpenAI Service – Challenge of Logging Streaming ChatCompletions
  11. Azure OpenAI Service – How To Get Insights By Collecting Logging Data
  12. Azure OpenAI Service – How To Handle Rate Limiting
  13. Azure OpenAI Service – Tracking Token Usage with APIM
  14. Azure AI Studio – Chat Playground and APIM
  15. Azure OpenAI Service – Streaming ChatCompletions and Token Consumption Tracking
  16. Azure OpenAI Service – Load Testing

Hello again!

Today I’m back with another post focusing on AOAI (Azure OpenAI Service). My focus falls into two buckets: operations and security. For this post I’m going to cover a topic that falls into the operations bucket.

Last year I covered some of the challenges that arise when tracking token usage when the need arises to use streaming-based ChatCompletions. The challenges center around logging the prompt, response, and token usage. The guidance I provide in that prior post is unchanged for logging prompts and completions, but capturing token usage has gotten much easier. Before I dig into the details, I want to very briefly cover why you should care about and track token usage.

The whole “AI is the new electricity” statement isn’t all hype. Your business units are going to want to experiment with it, especially generative AI, to for optimizing business processes such as shaving time off how long it takes a call center rep to resolve a customer’s problem or automating a portion of what is now a manual limited value-added activity of highly paid employees to free them up to focus on activities that drive more business value. As an organization, you’re going to be charged with providing these services to the developers, data scientists, an AI engineers. The demand will be significant and you gotta figure out a scalable way to provide these services while satisfying security, performance, and availability requirements.

This will typically drive an architecture where capacity for generative AI is pooled and distributed to your business units a core service. Acting as a control point to ensure security, availability, and performance requirements can be met, the architectural concept of a Generative AI Gateway is introduced. This component usually translates to Azure API Management, 3rd party API Gateway, or custom developed solution with “generative ai-specific” functionality layered on top (load balancing, rate limiting based on token usage, token usage tracking, prompt and response logging, caching of prompts and responses to reduce costs and latency, etc).

In Azure you might see a design like the image below where you’re distributing the requests across multiple AOAI instances spread across regions, geo-political boundaries, and subscriptions in order to maximize your quota (number of requests and tokens per model). When you have this type of architecture it’s important to get visibility into the token usage of each application for charge backs and to ensure everyone is getting their fair share of the capacity (i.e. rate limiting).

Example high-level architecture using AOAI

Now let’s align the token usage back to streaming ChatCompletions. With a non-streaming ChatCompletion the API automatically returns the number of prompt tokens, completion tokens, and total tokens that were consumed with the request. This information is easy to intercept at the Generative AI Gateway to use as an input for rate limiting or to pass on to some reporting system for charge backs on token usage.

Non-streaming ChatCompletion returning usage

When performing a streaming ChatCompletion the completion is returned in a series of server events (or chunks). Usage statistics were historically not provided in the response from the AOAI service to my understanding and experience. This forced the application developer or the owner of the Generative AI Gateway to incorporate some custom code using a Tokenizer like tiktoken to manually calculate the total number of tokens. An example of such a solution developed by one of my wonderful peers Shaun Callighan can be found here. This was one of the only (maybe the only?) to approach the problem at the time but sometimes resulted in slightly skewed results from what was estimated by the tokenizer to what the actual numbers were when processed by the AOAI service and billed to the customer.

Streaming ChatCompletion chunks of responses



Microsoft has made this easier with the introduction of the azure-openai-emit-token-metrics policy snippet for APIM (Azure API Management) which can emit token usage for both streaming and non-streaming completions (among other operations) to an App Insights instance. I talk through this at length in this post. However, at this time, it’s supported for a limited set of models and not every customer uses APIM. These customers have had to address the problem using a custom solution like I mentioned earlier.

Earlier this week I was mucking around with a simplistic ChatBot I’m building (FYI, Streamlit is an amazing framework to help build GUIs if you’re terrible at frontend design like I am) and I came across an additional parameter that can be passed when making a streaming ChatCompletion. You can pass an additional parameter called stream_options which will provide the token usage of the ChatCompletion in the the second to last chunk delivered back to the client. I’m not sure when this was introduced or how I missed it, but it removes the need to calculate this yourself with a tokenizer.

 response = client.chat.completions.create(
    model=deployment_name,
    messages= [
        {"role":"user",
         "content": message}
    ],
    max_tokens=200,
    stream=True,
    stream_options={
         "include_usage": True
        }
 )

Below you’ll see a sample response from a streaming ChatCompletion when including the stream_options property. In the chunk before the final chunk (there is a final check not visible in this image), the usage statistics are provided and can be extracted.

This provides a much better option than trying to calculate this yourself. I tested this with 3.5-turbo and 4o (both with text and images) and it gave me back the token usage as expected (I’m using API version 2024-02-01). I threw together some very simple (and if it’s coming from me it’s likely gonna be simple because my coding skills leave a lot to be desired) to capture these metrics and return them as part of the completion.

# Class to support completion and token usage
class ChatMessage:
    def __init__(self, full_response, prompt_tokens, completion_tokens, total_tokens):
        self.full_response = full_response
        self.prompt_tokens = prompt_tokens
        self.completion_tokens = completion_tokens
        self.total_tokens = total_tokens

# Streaming chat completions
async def get_streaming_chat_completion(client, deployment_name, messages, max_tokens):
    response = client.chat.completions.create(
        model=deployment_name,
        messages=messages,
        max_tokens=max_tokens,
        stream=True,
        stream_options={
            "include_usage": True
        }
    )
    assistant_message = st.chat_message("assistant")
    full_response = ""

    with assistant_message:
        message_placeholder = st.empty()

    # Intialize token counts
    t_tokens = 0
    c_tokens = 0
    p_tokens = 0
    usage_dict = None


    for chunk in response:
        if chunk.usage:
            usage_dict = chunk.usage
            if p_tokens == 0:
                p_tokens = usage_dict.prompt_tokens
                c_tokens = usage_dict.completion_tokens
                t_tokens = usage_dict.total_tokens

        if hasattr(chunk, 'choices') and chunk.choices:
            content = chunk.choices[0].delta.content
            if content is not None:
                full_response += content
                message_placeholder.markdown(full_response)

    if full_response == "":
        full_response = "Sorry, I was unable to generate a response."

    return ChatMessage(full_response, p_tokens, c_tokens, t_tokens)

For those of using APIM as a Generative AI Gateway, you won’t have to worry about this for most of the OpenAI models offered through AOAI because the policy snippet I mentioned earlier will be improved to support additional models beyond what it supports today. For those of you using third-party gateways, this is likely relevant and may help to simplify your code and eliminate the discrepancies you see from calculating token usage yourself vs what you’re seeing displayed within the AOAI instance.

Well folks, this post was short and sweet. Hopefully this small tidbit of information helps a few folks out there who were going the tokenizer route. Any simplification these days is welcome!

Azure AI Studio – Chat Playground and API Management

This is part of my series on GenAI Services in Azure:

  1. Azure OpenAI Service – Infra and Security Stuff
  2. Azure OpenAI Service – Authentication
  3. Azure OpenAI Service – Authorization
  4. Azure OpenAI Service – Logging
  5. Azure OpenAI Service – Azure API Management and Entra ID
  6. Azure OpenAI Service – Granular Chargebacks
  7. Azure OpenAI Service – Load Balancing
  8. Azure OpenAI Service – Blocking API Key Access
  9. Azure OpenAI Service – Securing Azure OpenAI Studio
  10. Azure OpenAI Service – Challenge of Logging Streaming ChatCompletions
  11. Azure OpenAI Service – How To Get Insights By Collecting Logging Data
  12. Azure OpenAI Service – How To Handle Rate Limiting
  13. Azure OpenAI Service – Tracking Token Usage with APIM
  14. Azure AI Studio – Chat Playground and APIM
  15. Azure OpenAI Service – Streaming ChatCompletions and Token Consumption Tracking
  16. Azure OpenAI Service – Load Testing

Hello again folks!

Today, I’m going to be posting my first post in a series on Azure AI Studio. I’ll let the true AI professionals give you the gory details and features of the service. The way my small brain thinks of the service is a platform built on top of AML (Azure Machine Learning) to make building applications that use Generative AI more developer-friendly. You can build and test applications, deploy third-party models, and organize applications into “projects” which can be secured to a specific project team but share resources across an organization via the concept of a hub. I’ll cover more on those pieces in a future blog post, but for today I want to focus on a pattern I was messing around that I think would be appealing to most folks.

One of the neat features of AI Studio is the Chat Playground. The Chat Playground is a web interface for interacting with models you have deployed to Azure AI Studio. You can send prompts and receive completions, adjust parameters such as temperature, and even get a code sample of the code being run by the web interface. The models that can e deployed include OpenAI models deployed to an AOAI (Azure OpenAI Service) instance or third-party models like Meta’s Llama deployed to a serverless endpoint or self-managed compute (in AML called managed online endpoint). For the purposes of this post I’m going to be focusing on OpenAI models deployed to an AOAI instance.

Azure AI Studio Chat Playground

You’re probably looking at this and thinking, “Yeah that is cool… a similar functionality exists in Azure OpenAI Studio and it does the same thing.” That’s correct it does, but for many organizations using the Azure OpenAI Studio’s Chat Playground isn’t an option for a number of different reasons both operational and security-related.

From an operational perspective, the Azure OpenAI Studio’s Chat Playground is designed to communicate directly with the endpoint for an AOAI instance. As I’ve covered in previous posts, this can be problematic. One reason is you’re limited to the quota within the instance which could cause you to hit limits quickly if you direct a whole ton of users to it. Typically, you will load balance across multiple instances deployed to multiple regions across multiple subscriptions as I discuss in my post on load balancing AOAI. The other problem is dealing with internal chargebacks. If I have multiple BUs (business units) hammering away at an instance, I don’t have any easy to determine who which folks in what BU consumed what. While metrics are token usage are captured in the metrics streamed from an instance, there is no way to associate that usage with an individual.

On the security side, communicating directly with the AOAI instance means I can’t review the prompts and responses being sent and received by the service. Many regulated organizations have requirements for these to be captured for review to ensure the service is being used appropriately and sensitive data isn’t being sent that hasn’t been approved to be sent. Additionally, availability of the AOAI instance could be affected by one user going nuts and consuming the full quota.

The challenges outlined above have driven many customers to insert a control point. The industry seems determined to coin this architectural component a Gen AI Gateway so I’ll play along. For you fellow old folks, all a Gen AI Gateway really is an API Gateway with some Gen AI-related features slapped on top of it. It sits between the front-facing user application and the models processing the prompts and responses. The GenAI-specific features available within the gateway help to address the operational and security challenges I’ve outlined above. If you’re curious about the specifics on this, you can check out my post on load balancing, logging, tracking token usage, rate limiting, and extracting useful information from the conversation such as prompts and responses.

Example design and process flow of a Gen AI Gateway

In the image above I’ve included an example of how APIM (Azure API Management) could be used to provide such functionality. Within the customer base I work with at Microsoft, many customers have built something that functions similar to what you see above. A design like this helps to address the operational and security challenges I’ve outlined above.

Wonderful right? Now what the **** does this have to do with AI Studio’s Chat Playground? Well, unlike the Azure OpenAI Studio’s Chat Playground, AI Studio’s offering does support modifying the endpoint to point to your generative AI gateway. How you do this isn’t super intuitive, but it does work. Whether you go this route is totally up to you. Ok, disclaimer is done, let’s talk about how you do this.

One thing to understand about using AI Studio’s Chat Playground is it works the same way that Azure OpenAI Studio’s version works in regards to where the TCP connections are sourced from when making calls to the model. As can be seen in the Fiddler capture below, the TCP connections made when you submit a prompt from the Chat Playground are sourced from the user’s endpoint.

Fiddler capture showing Chat Completion coming from user endpoint

This makes our life much easier because we likely control the path that user’s packet takes and the DNS the user uses which means we can direct that user’s packet to a Gen AI Gateway. For the purposes of this post, my goal is to funnel these prompts and completions through an APIM instance I have in place which has some APIM policy snippets that do some checks and balances and a call a small app (based off an awesome solution assembled by my buddy Shaun Callighan) which logs prompts and responses and calculates token metrics. The data processed by the app are then sent to an Event Hub, processed by Stream Analytics, and dumped into CosmosDB.

APIM between Chat Playground and AOAI

When you want to connect to an AOAI instance from AI Studio’s Chat Playground you add it as a connection. These connections can created at the hub level (think of this as a logical container for the projects) and then shared across projects. When adding the connection you can browse for the instance you want to connect to or enter manually.

Adding a connection to an AOAI instance

If you were to do that you won’t be able to create a deployment of a model or access a deployment of a model deployed in the instances behind it. This is because AI Studio is making calls to the Azure management plane to enumerate the deployments within the instance. Since there isn’t an AOAI with the hostname of your AOAI instance, you’ll be unable to add deployments or pick a deployment from the Chat Playground.

To work around this, you need to add a connection to one of your AOAI instances. This will be your “stub” instance that we’ll modify the endpoint of to point to API Management. If you’re load balancing across multiple AOAI instances behind APIM, you need to ensure that you’ve already created your model deployments and you’ve named them consistently across all of the AOAI instances you’re load balancing to. In the image below, I modify the endpoint to point to my APIM instance. The azure-openai-log-helper path is added to send it to a specific API I have setup on APIM that handles logging. For your environment, you’ll likely just need the hostname.

Modifying the endpoint name

Now before you go running and trying to use the Chat Playground, you’ll have to make a change to the APIM policy. Since the user’s browser is being told to make the call to this endpoint from a different domain (AI Studio’s domain) we need to ensure there is a CORS policy in place on the APIM instance to allow for this, otherwise it will be blocked by APIM. If you forget about this policy you’ll get a back a 200 from the APIM instance but nothing will be in the response.

Your CORS policy could look like the below:

        <cors>
            <allowed-origins>
                <origin>https://ai.azure.com/</origin>
                <origin>https://ai.azure.com</origin>
            </allowed-origins>
            <allowed-methods preflight-result-max-age="300">
                <method>POST</method>
                <method>OPTIONS</method>
            </allowed-methods>
            <allowed-headers>
                <header>authorization</header>
                <header>content-type</header>
                <header>request-id</header>
                <header>traceparent</header>
                <header>x-ms-client-request-id</header>
                <header>x-ms-useragent</header>
            </allowed-headers>
        </cors>

Once you’ve modified your APIM policy with the CORS update, you’ll be good to go! Your requests will now flow through APIM for all the GenAI Gateway goodness.

Chat Completion from AI Studio Chat Playground flowing through APIM

When messing with this I ran into a few things I want to call out:

  1. Do not forget the CORS policy. If you run into a 200 response from APIM with no content, it’s probably the CORS snippet.
  2. If you have a validate-jwt snippet in your APIM policy that includes validating the claim includes cognitivesservices, remove that. The claim passed by AI Studio includes a trailing forward slash which won’t likely match what you get back if you’re using the MSAL library in code. You could certainly include some logic to handle it, but honestly the security benefit is so little from checking the claim just make it easy on yourself and remove the check for the claim. Keep the check that validate-jwt snippet but restrict it to checking the tenant ID in the token.
  3. Chat Playground will pass the content property as the prompt as an array (this is the more modern approach to allow for multi-modal models like GPT-4o which can handle images and audio). If you have an APIM policy in place to parse the request body and extract information you’ll need to update it to also handle when content is passed as an array.
  4. Chat Playground allows for the user to submit an image along with text in the prompt. Ensure your APIM policy is capable of handling prompts like that. Dealing with human users being able to submit images to an LLM and ensuring you’re reviewing that image for DLP and calculating token consumption for streaming Chat Completion is a whole other blog topic that I’m not going to do today. Key thing is you want to account for that. Block images or ensure your policy is capable of handling it if you’re deploying 4o or 4 Vision.

Well folks that sums up this post. I realize this solution is a bit funky, and I’m not gonna tell you to use it. I’m simply putting it out there as an option if you have a business need strong enough to provide a ChatGPT-style solution but don’t have the bandwidth or time to whip up your own application.

Enjoy!