Digging deep into the AD DS workstation logon process – Part 2

Welcome back.

Today I will continue my analysis of the workstation logon process. Please take a read through Part 1 if you haven’t already. We left off with the workstation obtaining a Kerberos service ticket in order to authenticate to the domain controller to access the SMB share.

Ready? Let’s go!

  1. Source: Domain-joined machine
    Destination: Same Site or Closest Site Domain Controller
    Connection: TCP
    Port: 445
    Protocol: SMB
    Purpose: The domain-joined workstation requests a new authenticated SMB session with the domain controller and provides its Kerberos service ticket as proof of authentication.
    Links:

  2. Source: Domain-joined machine
    Destination: Primary DNS Server
    Connection: UDP
    Port: 53
    Protocol: DNS
    Purpose: DsGetDcName API issues a DNS query for an SRV record to the domain-joined machine’s primary DNS server for a domain controller offering the Kerberos service within its site using the SRV record of _ldap._tcp.FAKESITE._sites.dc._msdcs.contoso.local. The primary DNS server returns the results of the SRV query.

  3. Source: Domain-joined machine
    Destination: Domain Controller resolved from IP returned from previous step
    Connection: UDP
    Port: 389
    Protocol: LDAP
    Purpose: DsGetDcName API on domain-joined machine issues a specially crafted LDAP query (referred to by Microsoft as an LDAP Ping) to the domain controller it receives back from the query and then queries the RootDSE for the NetLogon attribute. The detail query is as follows:

    • Filter: (&(DnsDomain=)(Host=HOSTNAME)(DomainGUID=)(NtVer=)(DnsHostName=))
    • Attributes: NetLogon

    The domain controller passes the query to the NetLogon service running on the domain controller which evaluates the query to determine which site the server belongs in. The domain controller returns information about its state and provides the information detailed below (https://msdn.microsoft.com/en-us/library/cc223807.aspx):

    • Flags:
      • DSPDCFLAG – DC is PDC of the domain
      • DSGCFLAG – DC is a GC of the forest
      • DSLDAPFLAG – Server supports an LDAP server
      • DSDSFlag- DC supports a DS and is a domain controller
      • DSKDCFlag DC is running KDC service
      • DSTimeServFlag – DC is running time service
      • DSClosestFlag – DC is in the closest site to the client
      • DSWritableFLag – DC has a writable DS
      • DSGoodTimeServFlag (0) – DC is running time service
      • DSNDNCFlag – DomainName is a non-domain NC serviced by the LDAP server
      • DSSelectSecretDomain6Flag – the server is a not an RODC
      • DSFullSecretDomain6Flag – The server is a writable DC
      • DSWSFlag – The Active Directory Web Service is present on the server
      • DSDNSControllerFlag – DomainControllerName is not a DNS name
      • DSDNSDomainFlag – DomainName is not a DNS name
      • DSDNSForestFlag – DnsForestName is not a DNS name
    • DomainGuid:
    • DnsForestName: contoso.local
    • DnsDomainName: contoso.local
    • DnsHostName: dc2.contoso.local
    • NetbiosDomainName: CONTOSO
    • NetbiosComputerName: DC2
    • Username:
    • DcSiteName: FAKESITE
    • ClientSiteName: FAKESITE
    • NextClosestSIteName: Default-First-Site-Name

    The client caches this information to its DCLocator cache.

  4. Source: Domain-joined machine
    Destination: Same Site or Closest Site Domain Controller
    Connection: TCP
    Port: 445
    Protocol: SMB
    Purpose: The domain-joined workstation sends an SMB TREE CONNECT Request to the domain controller for the IPC$ share accessed by \IPC$. The IPC$ share is used to setup a named pipe for further RPC calls to the service such as allowing the workstation to enumerate the shares available on the server. The domain controller responds with an SMB TREE CONNECT Response providing information about the capabilities of the IPC$ share.
    Links:

  5. Source: Domain-joined machine
    Destination: Same Site or Closest Site Domain Controller
    Connection: TCP
    Port: 445
    Protocol: SMB
    Purpose: The domain-joined workstation sends an SMB IOCTL Request to the domain controller with the control FSCTL_VALIDATE_NEGOTIATE_INFO (0x00140204). This control is used to verify that the domain controller hasn’t changed the authentication mechanism originally negotiated. The domain controller responds with an SMB IOCTL Response confirming the authentication mechanism has not changed. This helps to prevent man in the middle attacks.
    Links:

  6. Source: Domain-joined machine
    Destination: Same Site or Closest Site Domain Controller
    Connection: TCP
    Port: 445
    Protocol: SMB
    Purpose: The domain-joined workstation sends an SMB IOCTL Request to the domain controller with the control FSCTL_QUERY_NETWORK_INTERFACE_INFO (0x001401FC). This control is used to determine whether or not the server has multiple IPs and a new channel should be established. The domain controller responds with an SMB IOCTL Response providing an answer.
    Links:

  7. Source: Domain-joined machine
    Destination: Same Site or Closest Site Domain Controller
    Connection: TCP
    Port: 445
    Protocol: SMB
    Purpose: The domain-joined workstation sends an SMB IOCTL Request to the domain controller with the control SCTL_DFS_GET_REFERRALS (0x00060194). This control requests the DFS referral for the domain-based DNS root. The domain controller responds with an SMB IOCTL Response providing an answer with an entry for the FQDN and NetBios entries.
    Links:

  8. Source: Domain-joined machine
    Destination: Primary DNS Server
    Connection: UDP
    Port: 389
    Protocol: LDAP
    Purpose: The domain-joined workstation sends a DNS query for the A record for the second domain controller record it received back in the initial queries for the various SRV records. The domain controller responds with the answer to the DNS query.

  9. Source: Domain-joined machine
    Destination: Domain Controller resolved from IP returned from previous step
    Connection: UDP
    Port: 389
    Protocol: LDAP
    Purpose: DsGetDcName API on domain-joined machine issues a specially crafted LDAP query (referred to by Microsoft as an LDAP Ping) to the domain controller it receives back from the query and then queries the RootDSE for the NetLogon attribute. The detail query is as follows:

    • Filter: (&(DnsDomain=)(Host=HOSTNAME)(DomainGUID=)(NtVer=)(DnsHostName=))
    • Attributes: NetLogon

    The domain controller passes the query to the NetLogon service running on the domain controller which evaluates the query to determine which site the server belongs in. The domain controller returns information about its state and provides the information detailed below (https://msdn.microsoft.com/en-us/library/cc223807.aspx):

    • Flags:
      • DSPDCFLAG – DC is PDC of the domain
      • DSGCFLAG – DC is a GC of the forest
      • DSLDAPFLAG – Server supports an LDAP server
      • DSDSFlag- DC supports a DS and is a domain controller
      • DSKDCFlag DC is running KDC service
      • DSTimeServFlag – DC is running time service
      • DSClosestFlag – DC is in the closest site to the client
      • DSWritableFLag – DC has a writable DS
      • DSGoodTimeServFlag (0) – DC is running time service
      • DSNDNCFlag – DomainName is a non-domain NC serviced by the LDAP server
      • DSSelectSecretDomain6Flag – the server is a not an RODC
      • DSFullSecretDomain6Flag – The server is a writable DC
      • DSWSFlag – The Active Directory Web Service is present on the server
      • DSDNSControllerFlag – DomainControllerName is not a DNS name
      • DSDNSDomainFlag – DomainName is not a DNS name
      • DSDNSForestFlag – DnsForestName is not a DNS name
    • DomainGuid:
    • DnsForestName: contoso.local
    • DnsDomainName: contoso.local
    • DnsHostName: DCSERVER.contoso.local
    • NetbiosDomainName: CONTOSO
    • NetbiosComputerName: DCSERVER
    • Username:
    • DcSiteName: Default-First-Site-Name
    • ClientSiteName: FAKESITE
    • NextClosestSIteName: Default-First-Site-Name

    The client caches this information to its DCLocator cache.

All right folks, we’re going to break here. My next post will continue with the NetLogon process.

Thanks and see you then!

Digging deep into the AD DS workstation logon process – Part 1

Hi everyone. The holidays are over, spring is quickly approaching, and it’s been far too long since I’ve had a chance to do a deep dive. This year I have some work on the agenda for Microsoft Active Directory Domain Services (AD DS). That work will require a very strong understanding of the network flows, ports, and protocols that provide the service. While there are many different resources on the web, I haven’t found one that gets to the level I’d like to see. This made for the perfect opportunity for a series of blog posts.

Many of us have faced the challenge where there is a requirement to separate the domain controllers providing the AD DS service and the domain members with a firewall. Microsoft does a wonderful job defining the ports and protocols required for this scenario in this link (https://technet.microsoft.com/en-us/library/dd772723(v=ws.10).aspx). The integration is pretty straightforward with the only decision typically being whether to define static RPC ports or leveraging a firewall which is capable of handling dynamic RPC ports.

One of the things I’ve always wondered is when are each of these ports and protocols used? What better place to start than a common source for troubleshooting? For this series of blogs I will do a deep dive into the flows a domain-joined machine uses and what happens within those connections. Yeah I know, AD DS isn’t that glamorous in the year 2017, but all the moving parts, protocols, standards, and functions that power something as seemingly simple as a logon are fascinating and worth a deeper look.

To provide for this scenario I built a small lab in Azure with three Windows Server 2016 Standard VMs. Each VM is configured as seen below:

Name: DCSERVER
Roles: Active Directory Domain Services, DNS
IP: 10.0.10.101

Name: DC2
Roles: Active Directory Domain Services, DNS
IP: 10.0.10.102

Name: MEMBER
Roles: None
IP: 10.0.10.100

The AD DS forest uses the CONTOSO.LOCAL DNS namespace and has one custom site defined named FAKESITE. DCSERVER is servicing the Default-First-Site-Name and DC2 is servicing FAKESITE. FAKESITE has been assigned a subnet range that includes MEMBER. For tools I used Procmon to capture the registry entries that a domain-joined member’s Active Directory site is cached to. Additionally I used netsh to perform a network capture at boot up

Beyond the network flows, I was interested in observing the DCLocator (DSGetDcName) API behavior. I cleared the three registry entries listed below to ensure MEMBER would perform a DCLocator query at boot up. Additionally I used netsh to get a network capture at boot up (https://blogs.msdn.microsoft.com/canberrapfe/2012/03/30/capture-a-network-trace-without-installing-anything-capture-a-network-trace-of-a-reboot/) and Microsoft Network Monitor to analyze the capture.

– HKLMSystemCurrentControlSetServicesTcpipParametersDomain
– HKLMSystemCurrentControlSetServicesNetlogonParametersSiteName
– HKLMSystemCurrentControlSetServicesNetlogonParameterDynamicSiteName

With the background information taken care of, let’s jump into workstation authentication process.

  1. Source: Domain-joined machine
    Destination: Primary DNS Server
    Connection: UDP
    Port: 53
    Protocol: DNS
    Purpose: DsGetDcName API on domain-joined machine uses the information collected from the registries entries listed at the bottom of this step to issue a DNS query for an SRV record to the machine’s primary DNS server for a server offering an LDAP service _ldap._tcp.dc_msdsc.contoso.local. The primary DNS server returns the results of the SRV query.

    • HKLMSystemCurrentControlSetServicesTcpipParametersHostname
    • HKLMSystemCurrentControlSetServicesTcpipParametersDomain
    • HKLMSystemCurrentControlSetServicesTcpipParametersNameServer
    • HKLMSystemCurrentControlSetServicesTcpipParametersDhcpNameServer
    • HKLMSystemCurrentControlSetServiesNetlogonParametersSiteName
    • HKLMSystemCurrentControlSetServiesNetlogonParametersDynamicSiteName
  2. Source: Domain-joined machine
    Destination: Primary DNS Server
    Connection: UDP
    Port: 53
    Protocol: DNS
    Purpose: DSGetDcName API on domain-joined machine issues a DNS query for the A record of a domain controller from the results of the SRV query. The primary DNS server returns the results of the A record query.

  3. Source: Domain-joined machine
    Destination: Domain Controller
    Connection: UDP
    Port: 389
    Protocol: LDAP
    Purpose: DsGetDcName API on domain-joined machine issues a specially crafted LDAP query (referred to by Microsoft as an LDAP Ping) to the domain controller querying the RootDSE for the NetLogon attribute. The detail query is as follows:

    • Filter: (&(DnsDomain=)(Host=HOSTNAME)(DomainSID=)(DomainGUID=)(NtVer=)(DnsHostName=))
    • Attributes: NetLogon

    The domain controller passes the query to the NetLogon service running on the domain controller which evaluates the query to determine which site the server belongs in. The domain controller returns information about its state and provides the information detailed below (https://msdn.microsoft.com/en-us/library/cc223807.aspx):

    • Flags:
      • DSPDCFLAG – DC is PDC of the domain
      • DSGCFLAG – DC is a GC of the forest
      • DSLDAPFLAG – Server supports an LDAP server
      • DSDSFlag- DC supports a DS and is a domain controller
      • DSKDCFlag DC is running KDC service
      • DSTimeServFlag – DC is running time service
      • DSClosestFlag – DC is in the closest site to the client
      • DSWritableFLag – DC has a writable DS
      • DSGoodTimeServFlag (0) – DC is running time service
      • DSNDNCFlag – DomainName is a non-domain NC serviced by the LDAP server
      • DSSelectSecretDomain6Flag – the server is a not an RODC
      • DSFullSecretDomain6Flag – The server is a writable DC
      • DSWSFlag – The Active Directory Web Service is present on the server
      • DSDNSControllerFlag – DomainControllerName is not a DNS name
      • DSDNSDomainFlag – DomainName is not a DNS name
      • DSDNSForestFlag – DnsForestName is not a DNS name
    • DomainGuid:
    • DnsForestName: contoso.local
    • DnsDomainName: contoso.local
    • DnsHostName: DCSERVER.contoso.local
    • NetbiosDomainName: CONTOSO
    • NetbiosComputerName: DCSERVER
    • Username:
    • DcSiteName: Default-First-Site-Name
    • ClientSiteName: FAKESITE
    • NextClosestSIteName: Default-First-Site-Name

    The client caches this information to its DCLocator cache and will perform another LDAP Ping to another domain controller if it was determined the domain controller is not within the client’s site.

  4. Source: Domain-joined machine
    Destination: Same Site or Closest Site Domain Controller
    Connection: TCP
    Port: 445
    Protocol: SMB
    Purpose: The domain-joined workstation sends an SMB2 NEGOTIATE Request to the domain controller and receives back an SMB2 Negotiate Response. This process allows the machines to agree upon an authentication mechanism. This SMB session will be leveraged through the logon process to communicate with a domain controller’s SYSVOL to process group policy and run any startup scripts.
    Links:

  5. Source: Domain-joined machine
    Destination: Primary DNS Server
    Connection: UDP
    Port: 53
    Protocol: DNS
    Purpose: DsGetDcName API issues a DNS query for an SRV record to the machine’s primary DNS server for a domain controller offering the Kerberos service using the SRV record of _kerberos._tcp.dc._msdcs.contoso.local. The primary DNS server returns the results of the SRV query.

  6. Source: Domain-joined machine
    Destination: Domain Controller
    Connection: UDP
    Port: 389
    Protocol: LDAP
    Purpose: DsGetDcName API on domain-joined machine issues a specially crafted LDAP query (referred to by Microsoft as an LDAP Ping) to the domain controller querying the RootDSE for the NetLogon attribute. The detail query is as follows:

    • Filter: (&(DnsDomain=)(Host=HOSTNAME)(DomainGUID=)(NtVer=)(DnsHostName=))
    • Attributes: NetLogon

    The domain controller passes the query to the NetLogon service running on the domain controller which evaluates the query to determine which site the server belongs in. The domain controller returns information about its state and provides the information detailed below (https://msdn.microsoft.com/en-us/library/cc223807.aspx):

    • Flags
      • DSPDCFLAG – DC is PDC of the domain
      • DSGCFLAG – DC is a GC of the forest
      • DSLDAPFLAG – Server supports an LDAP server
      • DSDSFlag- DC supports a DS and is a domain controller
      • DSKDCFlag DC is running KDC service
      • DSTimeServFlag – DC is running time service
      • DSClosestFlag – DC is in the closest site to the client
      • DSWritableFLag – DC has a writable DS
      • DSGoodTimeServFlag (0) – DC is running time service
      • DSNDNCFlag – DomainName is a non-domain NC serviced by the LDAP server
      • DSSelectSecretDomain6Flag – the server is a notan RODC
      • DSFullSecretDomain6Flag – The server is a writable DC
      • DSWSFlag – The Active Directory Web Service is present on the server
      • DSDNSControllerFlag – DomainControllerName is not a DNS name
      • DSDNSDomainFlag – DomainName is not a DNS name
      • DSDNSForestFlag – DnsForestName is not a DNS name
    • DomainGuid:
    • DnsForestName: contoso.local
    • DnsDomainName: contoso.local
    • DnsHostName: DCSERVER.contoso.local
    • NetbiosDomainName: CONTOSO
    • NetbiosComputerName: DCSERVER
    • Username:
    • DcSiteName: Default-First-Site-Name
    • ClientSiteName: FAKESITE
    • NextClosestSIteName: Default-First-Site-Name

    The client caches this information to its DCLocator cache and will perform another LDAP Ping to another domain controller if it was determined the domain controller is not within the client’s site.

  7. Source: Domain-joined machine
    Destination: Same Site or Closest Site Domain Controller
    Connection: TCP
    Port: 88
    Protocol: Kerberos
    Purpose: The domain-joined machine attempts to verify its identity with the domain controller by sending a KRB-AS-REQ without pre-authentication data. The domain controller checks the object that represents the principal to determine if the account has the “Do not require Kerberos preauthentication.” If the option is not checked, the domain controller returns KRB_ERROR (25) indicating preauthentication data is required.

  8. Source: Domain-joined machine
    Destination: Same Site or Closest Site Domain Controller
    Connection: TCP
    Port: 88
    Protocol: Kerberos
    Purpose: The domain-joined machine re-attempts to verify its identity with the domain controller by sending a KRB-AS-REQ with pre-authentication data. The domain controller validates the principal’s identity and responds with a KRB-AS-REP which includes a Kerberos TGT for the principal to use to obtain additional Kerberos service tickets.

  9. Source: Domain-joined machine
    Destination: Same Site or Closest Site Domain Controller
    Connection: TCP
    Port: 88
    Protocol: Kerberos
    Purpose: The domain-joined machine requests a service ticket for CIFS service running on the domain controller by sending a KRB-TGS-REQ for the CIFS service principal. The domain controller validates the machine’s Kerberos TGT and returns a service ticket for the CIFS service. The domain-joined machine will use the service ticket to authenticate to the SMB service in order to access the SYSVOL share.

  10. Source: Domain-joined machine
    Destination: Same Site or Closest Site Domain Controller
    Connection: TCP
    Port: 88
    Protocol: Kerberos
    Purpose: The domain-joined machine requests a service ticket for CIFS service running on the domain controller by sending a KRB-TGS-REQ for the CIFS service principal name. The domain controller validates the machine’s Kerberos TGT and returns a service ticket for the CIFS service. The domain-joined machine will use the service ticket to authenticate to the SMB service in order to access the SYSVOL share.

  11. Source: Domain-joined machine
    Destination: Same Site or Closest Site Domain Controller
    Connection: TCP
    Port: 88
    Protocol: Kerberos
    Purpose: The domain-joined machine requests a Kerberos TGT by sending a KRB-TGS-REQ for the KRBTGT service principal name. I have to admit, I’m pretty clueless on this one. The only usage I can find online references cross realm.

As you can see, there’s a ton of interesting chatter that only gets more interesting once we begin breaking down the SMB conversation. The SMB portion involved a ton of reading on my end, because I haven’t often done any deep dive troubleshooting into the protocol. As always, I’ll include the links that helped me along the learning path as we cruise through those sections. See you on the next post!

Attribute Uniqueness in Azure Active Directory

As I dive deeper into Azure Active Directory, I am learning quickly that AAD is a very different animal than on-premises Active Directory Domain Services (AD DS). While both solutions provide identity, authentication, and authorization services, they do so in very different ways. These differences require organizations to be prepared to adjust standard processes to get the two services to work together. Today I will focus on the identity portion of the solution and how the different attribute uniqueness requirements in AAD and AD DS can introduce the need for evolution of management processes for AD DS.

The attributes I want to focus on are userPrincipalName, proxyAddresses, and mail. In AD DS userPrincipalName is a single valued attribute, proxyAddresses is a multivalued attribute, and the values included in those attributes must be unique to the object in the forest. The mail attribute (the attribute that populates the E-mail field on the General tab of Active Directory Users and Computers (ADUC)) is a single valued attribute that doesn’t have a uniqueness requirement. In AAD all three attributes retain their single value or multivalued properties, however, the uniqueness requirements change considerably.

AD DS allows these values to be duplicated across different attributes. For example, one object could have a userPrincipalName of john@contoso.com and another object could have a value in its proxyAddresses attribute of SMTP:john@contoso.com. The same goes for an object that has a mail attribute of john@contoso.com and another object has a value in its proxyAddresses of john@contoso.com.

In AAD this is no longer true. User, group, and contact objects synchronized to AAD from AD DS require the userPrincipalName, proxyAddresses, and mail (also targetAddresses if you’re using it) to be unique among all objects in the directory. This means that each of the scenarios I discussed above will create synchronization errors. You can’t have one user object with a value in the proxyAddresses of john@contoso.com and another use object with mail attribute of john@contoso.com.

What happens if you do? Well, let’s make it happen. In this scenario we have two user objects with the configuration below:

Object 1
userPrincipalName: jess.felton@journeyofthegeek.com
proxyAddresses: SMTP:felton@feltonma.com
Sync Status: Already synced to Azure AD

Object 2
userPrincipalName: matt.felton@journeyofthegeek.com
proxyAddresses:
mail: felton@feltonma.com
Sync Status: Not yet synced to Azure AD

After we force a delta synchronization of Azure AD Sync, the errors provided below pop up in Synchronization Manager and an email alert:

Screen-Shot-2016-06-05-at-8.07.18-PM.png

Screen-Shot-2016-06-05-at-8.08.24-PM

The net result of the above matt.felton@journeyofthegeek.com won’t synchronize correctly to AAD and the user will be unable to authenticate to AAD. How about two user objects with the same mail attribute? That’s a common use case, right? Nope, same issue. Take note that just because you receive an error saying the issue is with a duplicate value in the proxyaddresses attribute, it could be the userPrincipalName, mail, or targetAddress of another object in AD DS.

Small differences like this can lead to major changes in how organizations manage AD DS when they begin their journey into AAD. The key take away here is to understand that AD DS and AAD are not the same thing, the differences need to be understood, and you must be prepared to evolve existing processes if you wish to leverage the solution.

I’ll end this with a thank you to Jimmie Lightner from MS for his blog post that brought light to this issue many months ago. You can read that post here.

P.S. Take note that if you opt to an alternate login ID (separate attribute from userPrincipalName for user identifier in AAD), the uniqueness will carry over to that attribute as well.